资源类型

期刊论文 149

年份

2023 19

2022 11

2021 14

2020 9

2019 10

2018 12

2017 8

2016 2

2015 7

2014 6

2013 22

2012 1

2011 6

2010 4

2009 9

2008 1

2007 4

2003 2

展开 ︾

关键词

固体氧化物燃料电池 8

氧化石墨烯 3

SOFC 2

固体氧化物电解池 2

碳基燃料 2

聚环氧乙烷 2

2

Al@AP/PVDF纳米复合材料 1

CCS 1

CO2分离 1

CO2捕集 1

H2O/CO2共电解 1

PB-PSOI 1

SOFC电池堆 1

一氧化碳氧化 1

二氧化碳 1

二氧化碳还原 1

亚稳态分子间复合材料 1

交流阻抗 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes

Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU

《能源前沿(英文)》 2013年 第7卷 第2期   页码 146-154 doi: 10.1007/s11708-013-0253-y

摘要: The experimental - characteristics of a Si cell module in a thermophotovoltaic (TPV) system were investigated using SiC or Yb O radiator. The results demonstrate that the short-circuit current increases while the open-circuit voltage, along with the fill factor, decreases with the cell temperature when the radiator temperature increases from 1273 to 1573 K, leading to a suppressed increase of the output power of the system. The maximum output power density of the cell module is 0.05 W/cm when the temperature of the SiC radiator is 1573 K, while the electrical efficiency of the system is only 0.22%. The efficiency is 1.3% with a Yb O radiator at the same temperature, however, the maximum output power density drops to 0.03 W/cm . The values of the open-circuit voltage and the maximum output power obtained from the theoretical model conform to the experimental ones. But the theoretical short-circuit current is higher because of the existence of the contact resistance inside the cell module. In addition, the performance and cost of TPV cogeneration systems with the SiC or Yb O radiator using industrial high-temperature waste heat were analyzed. The system electrical efficiency could reach 3.1% with a Yb O radiator at 1573 K. The system cost and investment recovery period are 6732 EUR/kWel and 14 years, respectively.

关键词: thermophotovoltaic (TPV)     industrial waste heat     ytterbium oxide     system efficiency    

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 918-929 doi: 10.1007/s11705-023-2305-0

摘要: The casual discharge of dyes from industrial settings has seriously polluted global water systems. Owing to the abundance of biomass resources, preparing photocatalysts for photocatalytic degradation of dyes is significant; however, it still remains challenging. In this work, a cuprous oxide/copper oxide composite was interpenetrated onto carbon nanosheets of cellulose-based flexible carbon aerogels (Cu2O/CuO@CAx) via a simple freeze-drying-calcination method. The introduction of the carbon aerogel effectively prevents the aggregation of the cuprous oxide/copper oxide composite. In addition, Cu2O/CuO@CA0.2 has a larger specific surface area, stronger charge transfer capacity, and lower recombination rate of photogenerated carriers than copper oxide. Moreover, Cu2O/CuO@CA0.2 exhibited high photocatalytic activity in decomposing methylene blue, with a degradation rate reaching up to 99.09% in 60 min. The active oxidation species in the photocatalytic degradation process were systematically investigated by electron spin resonance characterization and poisoning experiments, among which singlet oxygen played a major role. In conclusion, this work provides an effective method for preparing photocatalysts using biomass resources in combination with different metal oxides. It also promotes the development of photocatalytic degradation of dyes.

关键词: carbon aerogel     photocatalysis     dye degradation     biomass     cuprous oxide/copper oxide    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysis

《能源前沿(英文)》 doi: 10.1007/s11708-023-0901-9

摘要: Interconnector is a critical component to construct solid oxide cells (SOCs) stack. Oxidation of metallic interconnectors and Cr poisoning caused by oxidation are important factors that lead to long-term performance degradation of SOCs. Coating on the interconnector surface is an important approach to inhibit the oxidation and Cr migration of the interconnector. Herein, (La0.75Sr0.25)0.95MnO3–δ (LSM) and Mn1.5Co1.5O4 (MCO) are used to fabricate the coatings of interconnector. Two advanced thermal spray technology, atmospheric plasma spraying (APS) and low-pressure plasma spray (LPPS), are adopted for the coating preparation. The electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition performance of the coatings are tested and evaluated. The result indicates that MCO can generate more uniform and denser coatings than LSM. In addition, MCO coatings prepared by LPPS shows the best electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition. The initial area specific resistance (ASR) is 0.0027 Ω·cm2 at 800 °C. After 4 cooling cycle tests, the ASR increases to 0.0032 Ω·cm2 but lower than other samples. Meanwhile, the relative intense of Cr at the interface of SUS430 with MCO coatings fabricated by LPPS is lower than that of MCO fabricated by APS after 4 rising and cooling cycle operations, showing more favorable Cr diffusion inhibition performance.

关键词: interconnector coating     plasma spray     electrochemical performance     Cr diffusion inhibition     solid oxide cells (SOCs)    

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 403-411 doi: 10.1007/s11783-013-0491-6

摘要: Motivated by the recent realization of graphene sensor to detect gas molecules that are harmful to the environment, the ammonia adsorption on graphene or graphene oxide (GO) was investigated using first-principles calculation. The optimal adsorption and orientation of the NH molecules on the graphene surfaces were determined, and the adsorption energies ( ) as well as the Mulliken charge transfers of NH were calculated. The for the graphene are small and seem to be independent of the sites and orientations. The surface epoxy or hydroxyl groups can promote the adsorption of NH on the GO; the enhancement of the for the hydroxyl groups is greater than that for the epoxy groups on the surface. The charge transfers from the molecule to the surfaces also exhibit the same trend. The Br?nsted acid sites and Lewis acid sites could stably exist on the GO with surface hydroxyl groups and on the basal, respectively.

关键词: graphene oxide     first-principles calculations     NH3 adsorption    

Development of oxide dispersion strengthened ferritic steels with and without aluminum

Jae Hoon LEE

《能源前沿(英文)》 2012年 第6卷 第1期   页码 29-34 doi: 10.1007/s11708-012-0178-x

摘要: Pure Fe, Cr, Al, Ti elemental powders and pre-alloyed Y O powder were processed by high energy mechanical milling. The compositions of the mixed powders are designed as Fe-18Cr-0.2Ti-0.35Y O and Fe-18Cr-5Al-0.2Ti-0.35Y O in weight percent. The as-milled powders were consolidated by hot extrusion at 1423 K. The dispersed oxide particles were identified to be titania+ yttria for Al-free oxide dispersion strengthened (ODS) steel and alumina+ yttria for Al-added ODS steel, respectively. The ultimate tensile strength of Al-free ODS steel was higher than that of Al-added ODS steel over the temperature range of 298–973 K, because of the difference in number density and size of thermally stable oxide particles dispersed in both steel matrices. The strength in the longitudinal direction was lower than that in the transverse direction, probably due to anisotropy of the microstructure with elongated grains in the hot-extrusion direction for the 18%Cr-ODS steels with and without 5%Al.

关键词: oxide dispersion strengthened (ODS) steel     milling     extrusion     aluminum     yttria    

Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines

Rekha M., H. Kathyayini, N. Nagaraju

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 415-421 doi: 10.1007/s11705-013-1360-3

摘要: Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N adsorption-desorption for surface area, temperature programmed desorption of NH and -butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between -phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction parameters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction.

关键词: alumina     manganese oxide deposited on alumina     quinoxaline synthesis    

Time of flight improved thermally grown oxide thickness measurement with terahertz spectroscopy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0705-3

摘要: As a nondestructive testing technique, terahertz time-domain spectroscopy technology is commonly used to measure the thickness of ceramic coat in thermal barrier coatings (TBCs). However, the invisibility of ceramic/thermally grown oxide (TGO) reflective wave leads to the measurement failure of natural growth TGO whose thickness is below 10 μm in TBCs. To detect and monitor TGO in the emergence stage, a time of flight (TOF) improved TGO thickness measurement method is proposed. A simulative investigation on propagation characteristics of terahertz shows the linear relationship between TGO thickness and phase shift of feature wave. The accurate TOF increment could be acquired from wavelet soft threshold and cross-correlation function with negative effect reduction of environmental noise and system oscillation. Thus, the TGO thickness could be obtained efficiently from the TOF increment of the monitor area with different heating times. The averaged error of 1.61 μm in experimental results demonstrates the highly accurate and robust measurement of the proposed method, making it attractive for condition monitoring and life prediction of TBCs.

关键词: thermal barrier coatings     thermally grown oxide     terahertz spectroscopy     time of flight    

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1194-4

摘要: Eco-friendly IONPs were synthesized through solvothermal method. IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. Removal was >90% in all synthetic and real water samples. >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.

关键词: Adsorption     toxic metal oxide remediation     eco-friendly IONP     Iron oxide     CeO2 removal    

Enzymatic nitrous oxide emissions from wastewatertreatment

Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-018-1021-3

摘要: Nitrous oxide (N O), a potent greenhousegas, is emitted during nitrogen removal in wastewater treatment, significantlycontributing to greenhouse effect. Nitrogen removal generally involvesnitrification and denitrification catalyzed by specific enzymes. N O production and consumption vary considerably in responseto specific enzyme-catalyzed nitrogen imbalances, but the mechanismsare not yet completely understood. Studying the regulation of relatedenzymes’ activity is essential to minimize N O emissions during wastewater treatment. This paper aims to reviewthe poorly understood related enzymes that most commonly involvedin producing and consuming N O in terms oftheir nature, structure and catalytic mechanisms. The pathways ofN O emission during wastewater treatment arebriefly introduced. The key environmental factors influencing N O emission through regulatory enzymes are summarizedand the enzyme-based mechanisms are revealed. Several enzyme-basedtechniques for mitigating N O emissions directlyor indirectly are proposed. Finally, areas for further research onN O release during wastewater treatment arediscussed.

关键词: Nitrous oxide     Mitigation     Enzyme catalysis     Nitrogen removal     Wastewater treatment    

EFFECTS OF TRANSPORT STRESS ON THE INTESTINES INVOLVING NEURONAL NITRIC OXIDE SYNTHASE

《农业科学与工程前沿(英文)》   页码 285-295 doi: 10.15302/J-FASE-2022469

摘要:

● Transport stress declined the level of leukocytes including lymphocytes in rat serum.

关键词: intestine     nNOS     nNOS-positive neurons     transport stress    

Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO

Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1042-y

摘要: Membrane technology for oil/water separation has received increasing attention in recent years. In this study, the hydrophilic/underwater superoleophobic membrane with enhanced water permeability and antifouling ability were fabricated by synergistically assembling graphene oxide(GO) nanosheets and titanium dioxide (TiO ) nanotubes for oil/water separation. GO/TiO membrane exhibits hydrophilic and underwater superoleophobic properties with water contact angle of 62° and under water oil contact angle of 162.8°. GO/TiO membrane shows greater water permeability with the water flux up to 531 L/(m ·h·bar), which was more than 5 times that of the pristine GO membrane. Moreover, GO/TiO membrane had excellent oil/water separation efficiency and anti-oil-fouling capability, as oil residual in filtrate after separation was below 5 mg/L and flux recovery ratios were over 80%.The results indicate that the intercalation of TiO nanotubes into adjacent GO nanosheets enlarged the channel structure and modified surface topography of the obtained GO/TiO membranes, which improved the hydrophilicity, permeability and anti-oil-fouling ability of the membranes, enlightening the great prospects of GO/TiO membrane in oil-water treatment.

关键词: Hydrophilic     Superoleophobic     Graphene oxide     Membrane     Titanium dioxide nanotubes     Oil-water separation    

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第6期   页码 879-882 doi: 10.1007/s11708-022-0850-8

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} . . . . .

Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels

Xi CHEN, Fangming JIN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 207-220 doi: 10.1007/s11708-019-0628-9

摘要: To tackle the crisis of global warming, it is imperative to control and mitigate the atmospheric carbon dioxide level. Photocatalytic reduction of carbon dioxide into solar fuels furnishes a gratifying solution to utilize and reduce carbon dioxide emission and simultaneously generate renewable energy to sustain the societies. So far, titanium oxide-based semiconductors have been the most prevalently adopted catalysts in carbon dioxide photoreduction. This mini-review provides a general summary of the recent progresses in titanium oxide-catalyzed photocatalytic reduction of carbon dioxide. It first illustrates the use of structural engineering as a strategy to adjust and improve the catalytic performances. Then, it describes the introduction of one/two exogenous elements to modify the photocatalytic activity and/or selectivity. Lastly, it discusses multi-component hybrid titanium oxide composites.

关键词: photocatalysis     carbon dioxide reduction     semiconductors     titanium oxide     renewable fuels    

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel

Yuzhang WANG, Shilie WENG, Yiwu WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 195-206 doi: 10.1007/s11708-011-0148-8

摘要: A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

关键词: planar solid oxide fuel cell (SOFC)     direct internal reforming     chemical reaction     methane     electrochemical    

标题 作者 时间 类型 操作

Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes

Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU

期刊论文

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysis

期刊论文

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

期刊论文

Development of oxide dispersion strengthened ferritic steels with and without aluminum

Jae Hoon LEE

期刊论文

Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines

Rekha M., H. Kathyayini, N. Nagaraju

期刊论文

Time of flight improved thermally grown oxide thickness measurement with terahertz spectroscopy

期刊论文

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

期刊论文

Enzymatic nitrous oxide emissions from wastewatertreatment

Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen

期刊论文

EFFECTS OF TRANSPORT STRESS ON THE INTESTINES INVOLVING NEURONAL NITRIC OXIDE SYNTHASE

期刊论文

Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO

Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang

期刊论文

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

期刊论文

Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels

Xi CHEN, Fangming JIN

期刊论文

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel

Yuzhang WANG, Shilie WENG, Yiwu WENG

期刊论文